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ABSTRACT: We develop a Bayesian approach to determine the most
probable structural ensemble model from candidate structures for
intrinsically disordered proteins (IDPs) that takes full advantage of
NMR chemical shifts and J-coupling data, their known errors and
variances, and the quality of the theoretical back-calculation from
structure to experimental observables. Our approach differs from previous
formulations in the optimization of experimental and back-calculation
nuisance parameters that are treated as random variables with known
distributions, as opposed to structural or ensemble weight optimization
or use of a reference ensemble. The resulting experimental inferential
structure determination (EISD) method is size extensive with O(N)
scaling, with N = number of structures, that allows for the rapid ranking
of large ensemble data comprising tens of thousands of conformations.
We apply the EISD approach on singular folded proteins and a
corresponding set of ∼25 000 misfolded states to illustrate the problems that can arise using Boltzmann weighted priors. We then
apply the EISD method to rank IDP ensembles most consistent with the NMR data and show that the primary error for ranking
or creating good IDP ensembles resides in the poor back-calculation from structure to simulated experimental observable. We
show that a reduction by a factor of 3 in the uncertainty of the back-calculation error can improve the discrimination among
qualitatively different IDP ensembles for the amyloid-beta peptide.

■ INTRODUCTION

X-ray and electron crystallography and microscopy have
excelled at determining the structure of folded proteins and
their complexes1,2 since the atomic positions are over-
determined by the available diffraction intensities from protein
crystals. However, these methods are ill-suited for structure
determination of intrinsically disordered proteins (IDPs),3

since the primary characteristic of IDPs is that they are not
singular well-folded structures but instead need to be
characterized as diverse ensembles of conformational substates
in solution.4 While techniques such as nuclear magnetic
resonance (NMR) are highly suitable for probing the solution
structural ensemble of an IDP, the dynamical time scale for IDP
motions results in highly averaged NMR observables that are
typically unable to fully resolve the conformational substates.
Therefore, building the connection between the experimental
observables and the complete IDP structural ensemble depends
critically on computational models.
Knowledge-based computational models are those that

directly use experimental NMR, small-angle X-ray scattering
(SAXS), and other biophysical information to derive the
structural ensemble. Methods that use experimental constraints
from NOE data, RDCs, J-couplings, and chemical shifts are the
foundation of NMR structure determination of folded proteins
and are embodied in software packages such as CANDID,5

CYANA,6 X-Plor-NIH,7,8 SPARTA+,9 and TALOS.10 For the
case of IDPs, knowledge-based approaches start with an
extensive set of conformations derived from a variety of
sources, such as MD,11−13 or methods such as TraDES14 and
Flexible-Meccano,15 which create ensembles of random
statistical-coil conformers. The resulting “basis set” of structures
is then culled for the subset of conformations that when back-
calculated are in best agreement with experimental data, to
create the IDP ensemble. Examples of such methodology are
the energy-minima mapping and weighting method,16,17

ASTEROIDS,15 and the ENSEMBLE program which accom-
modates data from a very wide range of the aforementioned
NMR sources, as well as hydrodynamic radii (Rh) and SAXS.18

By contrast, in recent work we have used de novo molecular
dynamics sampling for amyloid-beta (Aβ) in which no
experimental restraints are applied.11,19 This de novo MD
approach allows for the possibility of discovering new
conformational ensembles and their time scales of intercon-
version that is important for correctly capturing NOESY data,
and that may also be consistent with the experimental
observable once validated through back-calculation. We have
found that the unbiased MD calculation yielded qualitatively
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different structural ensembles than the TraDES or Flexible-
Meccano approaches for Aβ,12,20 in the sense that the de novo
MD structures comprised a Boltzmann weighted combination
of overall collapsed structures with heterogeneous populations
of well-defined turns, α-helices, β-strands, and β-hairpins, as
opposed to extended statistical coils with at most local
secondary structure motifs.
The knowledge-based and de novo approaches are also

complementary in that using experimental data directly can
overcome challenges of insufficient sampling and force field
inaccuracies, while using the power of unbiased sampling can
compensate for gaps in experimental restraints in conformer
generation and selection. Even so, while these approaches have
been highly beneficial to the IDP field, limitations of the
sampling and conformer selection methods are beginning to
become apparent in either case. In particular, there may be a
range of confidence in the IDP ensemble generated depending
on how severe the problem is experimentally under-determined
(unlike the folded protein case), whether the back-calculations
from structure to experimental observable contain significant
error, or whether the basis set of structures are actually
representative and/or complete.
For example, while chemical shifts and scalar couplings can

usually be experimentally measured with high accuracy, we
require quantitative back-calculations of the NMR observables
from structure to make the best use of that experimental data,
in order to generate tighter spatial restraints to discriminate
among alternative structural models. To illustrate this point,
Figure 1 compares experimental chemical shifts measured for
the IDP Aβ42 against chemical shift predictions using
SHIFTX221 and SHIFTX22 applied to the same IDP structural
ensemble.

Although improvements realized by SHIFTX2 over SHIFTX
were significant for folded proteins with the introduction of
structural homology information, the level of difference
between the calculators is relatively small for the Aβ42
example, since structural homology plays no role for IDPs.
Therefore, while heuristic chemical shift calculators and
parameter fits to the Karplus equation for J-couplings can be
predicted with reasonable accuracy for folded proteins, their
applicability to unstructured IDPs is currently problematic.
Therefore, to most accurately represent our best knowledge
about the IDP problem, one must be careful to extract as much

information as possible from experiments, while accounting for
any intrinsic measurement error or back-calculation uncertain-
ties and adding as little information as possible in the form of
heuristics and assumptions. Hence although the IDP problem is
underdetermined for finding a unique solution, Bayesian
optimization seems ideally suited for the IDP problem by
narrowing the set of solutions to ones that are more relevant
than others based on the highest or lowest probabilities.
The seminal work of Nilges and co-workers23 used Bayesian

inference to derive a probability distribution for the folded
structure and its precision for well-defined macromolecules
characterized using NMR. A number of groups have extended
the inferential structure determination (ISD) method into the
IDP structure determination domain, such as the Variational
Bayesian Weighting (VBW) method,24−26 Bayesian ensemble
refinement;27 maximum entropy approaches;28−30 and other
Bayesian formulations31−33 that seek to define “the best” IDP
ensemble given the data.
These important influences differ from the Bayesian model

presented here in several ways. In particular, we define a set of
“nuisance parameters” for each experimental data type that are
associated with both the intrinsic experimental error, which for
NMR data tends to be small, as well as for errors and any
uncertainty in parameters used in the back-calculation from
structure, which we illustrate using heuristic chemical shift
calculators or Karplus equations for J-couplings. By modeling
the nuisance parameters that represent uncertainty in
experimental information as random variables whose distribu-
tions are known from the available literature, we then optimize
over those distributions for each data point to arrive at an
optimal combination of values sampled from these distribu-
tions. The resulting formulation of our posterior function will
be shown to be both size extensive and to scale linearly with the
number of structures N, as opposed to the O(N3) scaling and
lack of size extensivity exhibited by other Bayesian
methods.24−26

Our resulting experimental inferential structure determina-
tion (EISD) approach is tested and shown to be quite accurate
when applied to three folded proteins using a uniform prior,
and we provide cautionary evidence that Boltzmann priors can
overwhelm the experimental information and degrade the
quality of prediction of the native state for one of the folded
proteins with a disordered section. We then extend the EISD
method using a uniform prior to rank 7 qualitatively different
IDP ensembles for Aβ42 by optimizing posterior distributions
that are most consistent with chemical shift and J-coupling
NMR data. We show that the problem of determining IDP
ensembles is not strictly one of overcoming limited sampling,
force field inadequacies, or uncertainty in experimental
measurements, but that there are sorely needed improvements
in the accuracy of the back-calculation from structure. Finally,
we show that a reduction in back-calculation uncertainty by a
factor of ∼3−5 could yield significant overall improvement in
IDP structural ensemble determination.

■ THEORY

Rieping and co-workers presented a Bayesian framework for
determining the most probable structure of a well-folded
protein, illustrated using NOESY experimental data that was
back-calculated under the isolated spin pair approximation.23

Their ISD method attempted to find the most probable model
from candidate structures from the posterior probability

Figure 1. Experimental chemical shifts for Aβ42 (green) compared to
back-calculated chemical shifts using SHIFTX (red) and SHIFTX2
(blue) on the same structural ensemble.
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distribution p(X,ξ | D,I), which is decomposed using Bayes’
Theorem:

ξ ξ ξ| ∝ | | |p X D I p D X I p I p X I( , , ) ( , , ) ( ) ( ) (1)

where X is a structure, ξ is a set of so-called “nuisance”
parameters which are uncertain values that cannot be
determined directly from the data (such as the uncertainties
in the experimental measurements or back-calculation equa-
tions), D is a set of experimental data, and I represents any
prior information about the system. In their work, eq 1 models
the conformational prior density p(X|I) via Boltzmann
weighting using an empirical energy function, the prior density
of nuisance parameters p(ξ|I) with Jeffrey’s (uninformative)
prior, π(ξ), and finally assumes that all deviations from the
experimental data fit a log-normal distribution to yield the
following probabilistic model23
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Equation 2 assumes we are given a set of M experimental
data observations, D = {di}i = 1

M , a corresponding set of M
simulated observables from a candidate structure X → {oi}i = 1

M ,
which are back-calculated using an approximate function f, and
that all uncertainty and error is captured with a single variance
σ parameter. We refer to the formulation in eq 2 as the original
inferential structure determination (OISD) method throughout
the rest of the paper.
While these assumptions proved robust for the folded class of

protein, it requires significant reformulation if it is to be applied
to the more underdetermined problem of IDPs, where using all
known and reliable information well is crucial. For example, eq
2 uses an uninformative prior to represent the experimental
nuisance parameters, even though often we know quite a lot
about the distribution of these parameters. Additionally, the
underlying assumptions about the experimental data effectively
lumps all uncertainties into a single σ, which prevents us from
using all the information we know about the separate
distributions of different experimental data types and the
variable quality with which we can back-calculate these
observables from structure. For example, we can model the
experimental error in Cα and Hα chemical shifts as a normal
distribution with mean equal to 0 and variances equal to 0.1
and 0.01, respectively, and the corresponding error probability
of 0.05 in the distributions would then be 0.1827 and 1.487 ×
10−6. So if the log-normal distribution in eq 2 is fit using many
Cα shifts, than a large error in an Hα measurement might go
unnoticed, although it is likely quite significant for discriminat-
ing for or against a candidate structure.
More recent Bayesian methods reformulate how we evaluate

the p(X,ξ | D,I) term to take better advantage of known and
thus useful experimental information from the NMR
method.24−26,29,34 To model a more informative prior p(ξ|I)
for the nuisance parameters, one can decompose it into
independent distributions for each experimental data, which
allows for the modeling of uncertainties of individual data type
more precisely instead of lumping it into one large variance σ.
This essentially provides a higher resolution model that

involves more refined experimental assumptions and is easily
extensible as we gain more information about the system of
interest, whether it is a folded protein or an IDP. Although
Stultz and co-workers also model uncertainties associated with
individual data types and their back-calculation, we use this
information differently in the formulation of our posterior
distribution by optimizing the experimentally related nuisance
parameters to conform within the variance of their distributions
and not weights on structures as they do in their Variational
Bayesian Weighting method (VBW). This has important
consequences for the scaling and size extensivity of the
Bayesian model that we show in the Results section.
To construct the EISD model, we first assume independence

of all (xi,di) pairs and then take the log of eq 1 to yield
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in which the structural prior distribution p (X | I) is modeled
either as a uniform prior or as a Boltzmann prior, which is
explored in the Results section. For the experimental prior, we
define a set of nuisance parameters defined as

ξ ξ ξ| =p I p p( ) ( ) ( )i (exp) (back)i i (4)

where p(ξ(exp)i) and p(ξ(back)i) define a set of independent
Gaussian distribution models for all experimental and back-
calculation error for each data type and for each data point i,
respectively. In this work, all of the experimental and back-
calculation nuisance parameters are defined as Gaussian
random variables whose distributions are taken from the
literature and described in more detail in Methods and the
Supporting Information.
These terms collectively consider all uncertainty in the

experimental data and back-calculation, and we can therefore
model the conditional distribution of data points given
structural measurements and nuisance parameters as
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This inference scheme is then easily extended to IDPs if we
now assume that we are given N structures in the ensemble, X
= {X(j)}j = 1

N each of which contain M structural measurements,
X(j) → {oi

(j)}i = 1
M as well as the data and nuisance parameter

terms of the particular experimental measurement. In addition,
all that is known for a given NMR measurement on an IDP is
that it corresponds to an average of that measurement over
every structure in the ensemble. The only change to eq 5 that is
required to make EISD suitable for IDPs is
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where ⟨ ⟩ denotes an average over structures used to back-
calculate experimental observables. For both folded proteins
and IDPs, the posterior probability is determined by an
optimization over the combination of nuisance parameters
sampled from these distributions for each data point (eqs 5 and
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6) to arrive at the model probability for structures or IDP
ensembles.

■ METHODS
We created an ensemble of misfolded structures for three natively
folded proteins, the 21 residue Trp-cage mini-protein (1L2Y),35 a 135-
residue retinol binding protein in its apo state (1JBH),36 and a 71
amino acid 8.3KDA protein with unknown function from
methanobacterium thermoautotrophicum (1GH9) which has a disor-
dered section.37 In each case, we used a reverse Metropolis algorithm
to create a 25 000 member ensemble starting with the native PDB
structure for a given protein, and at every iteration perturbing the
current state by randomly sampling ϕ,ψ dihedral angles for a random
residue from a Gaussian Mixture Model of dihedral angles trained with
10 000 PDB structures (thereby generating a Ramachandran plot).
The result is a set of physically reasonable but misfolded structures
with RMSD values from the native conformation ranging from 0.0 to
10.0 Å. For each structure we calculated log p(X,ξ | D,I) using both the
OISD approach that lumps all uncertainty into a single variance, and
the EISD formulation which treats experimental data types separately,
as well as a physical energy using AMBER99 and an implicit solvent
force field as implemented in MMTK.38

For the IDP ensembles, we use previously reported IDP data sets
generated for the Aβ42 monomer: one random coil ensemble
generated from TraDES;14 one ensemble generated from a replica
exchange simulation (de novo MD),20 one statistical coil ensemble that
incorporates bioinformatics knowledge about independent local
secondary structure at each residue (Pred-SS),20 and four ensembles
generated by adding experimental restraints from NMR (RDCs,
NOEs, scalar couplings, and chemical shifts) operating on the de novo
MD and Pred-SS ensembles using ENSEMBLE (MD-ENS1, MD-
ENS2, MD-ENS4, and Pred-SS-ENS).18,39,40

In this work we use chemical shifts and J-coupling data reported for
1L2Y,35 1JBH,36 1GH9,37 and Aβ42.11,20,41,42 We model p(ξ(exp)i) as
Gaussian distributions centered at the reported NMR data value, and
use the experimental uncertainty for each measured data point to
define the variance, and the reader is referred to the original
experimental studies for this nuisance data. To model the Gaussian
distributions for p(ξ(back)i), there are differences in the treatment of
back-calculations for scalar couplings and chemical shifts. For J-
couplings we optimize over the three nuisance parameters A, B, and C
of the back-calculation function f(x), i.e., the Karplus equation (Table
S1):

ϕ ϕ= + +J A B Ccos cos2 (7)

whose mean and variance are taken from Vuister and Bax.43 For
chemical shifts we use SHIFTX221 as the back-calculator, but it does
not allow for direct optimization of parameters of f. The modeled
Gaussian distributions in this case are given in Table S1 using the well-
documented error distributions.21

We used the local optimization Powell algorithm in the SciPy
package44 to maximize the posterior probabilities by optimizing the
complete (low-dimensional) set of nuisance parameters, {ξ}, for all
available experimental chemical shifts and scalar coupling data and
back-calculations, for both OISD and EISD. We found in practice that
global optimizations were sometimes required to maximize the
probability in the OISD model, whereas local optimizers were always
sufficient for EISD. This lends an advantage to EISD since global
optimization is much more computationally intensive than local
optimization algorithms.

■ RESULTS

Our first test is to see how well OISD and EISD perform on
predicting the native PDB structure of well-folded proteins with
respect to ∼25 000 other structures with larger RMSDs. Figure
2 shows the plot of optimized log p(X,ξ | D,I) vs RMSD using

115 measured chemical shifts (Hα, Hβ, HN, and all side chain
hydrogens) for the 21 residue Trp-cage mini-protein.36

We first use an uninformative uniform prior to better
ascertain the differences in how experimental information is
handled. Qualitatively we can see that for both schemes the log
probability has an overall negative correlation with RMSD,
meaning that both methods can distinguish well between
reasonable and unreasonable structures, even when energy is
not considered via Boltzmann weighting as per eq 4.
However, we find that the EISD formulation assigns higher

probabilities to lower RMSD structures compared to the OISD
model. For OISD, the largest RMSD structure with a
probability higher than the native state was 2.54 Å, whereas
the structure with the highest overall probability had an RMSD
of 1.02 Å. By contrast, for EISD the largest RMSD structure
with a probability higher than the native state was 1.37 Å,
whereas the structure with the highest overall probability had
an RMSD of 0.76 Å.
The same conclusions apply when we perform the same test

on the 1JBH protein using 855 chemical shifts (Figures S2 and
S3). In this case, using the OISD method, the largest RMSD
structure with a probability higher than the native state was
5.04 Å, while the highest overall probability had an RMSD of
2.41 Å. Using the EISD method, the largest RMSD structure
with a probability higher than the native state was 0.84 Å, while
the highest overall probability had an RMSD of 0.55 Å. Using

Figure 2. log p(X,ξ | D,I) vs RMSD for ∼25 000 misfolded structures
for 1L2Y using a uniform prior for (a) OISD and (b) EISD. Dotted
black lines represent the fit-to-data probability of the native structure.
All probabilities were normalized so the set had a mean of 0 and a
variance of 1 (for easier comparison between schemes).
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Boltzmann weighting as the prior improves these results so that
the most probable structure is ∼0.5 Å RMSD for both methods
(Figure S1).
To put this result in perspective, the RMSD among ∼90

different experimental X-ray structures of hen egg white
lysozyme is 0.75 Å,45 showing that we can obtain results with
an uninformative uniform prior that are nearly as good as
experimental uncertainty associated with X-ray crystallography
but using NMR data. In fact the Boltzmann prior dominates the
posterior distribution to overcome any difference in the
experimental error handling between methods for the Trp-
cage and retinol binding protein.
For the test on 1GH9 using 59 3J(HN,Hα) coupling

constants, both posterior probability models were able to
utilize the experimental data equally well (Figure 3) using a

uniform prior. Here the results are more mixed for both
methods since the largest RMSD structure with a probability
higher than the native state was 2.02 and 2.36 Å, although the
highest overall probability had an RMSD of 0.38 and 0.47 Å for
EISD and OISD, respectively.
However, when the Boltzmann prior is applied, there are

many structures in the 1GH9 test set with high-RMSD but with
significantly lower energies based on the simple nonpolarizable
protein force field and implicit solvent models we used here
(Figure 4). 1GH9 is relevant to the IDP problem since it has a
large disordered section, and we use the indiscriminate energy
function to highlight the issue for IDPs, for which force fields
may be suspect in general. This emphasizes the well-known

problem with poorly chosen energy functions that are not able
to discriminate the native state from misfolded structures.
This can in principle be remedied by using a different force

field, such as the energy functions we have previously
developed and which have undergone extensive validation for
native state predictions for folded proteins.46−48 Alternatively,
in the Bayesian formulation of Hummer and Kofinger, this
would be handled as an additional nuisance parameter that
reflects low confidence in the reference ensemble they use for
their prior.27 However, for IDPs, we believe the best use of
Boltzmann weighting, at present, is to use it to generate diverse
conformational states via molecular dynamics or Monte Carlo
sampling, and then to rank the resulting different ensembles
using an uninformative uniform prior as we have shown above,
i.e., using it directly for conformer selection as per previous
studies would too often lead to unpredictable outcomes such as
what we have demonstrated for 1GH9.
Next we turn to the application of the EISD method to a

more directly relevant IDP case, namely, the amyloid-β IDP.
This will illustrate multiple issues in regards to experimental
error handling that both differs from the work of others and
which yields insight into how to improve estimates of more
probable IDP ensemble in the future. On the basis of the
outcome on 1GH9, we use a uniform distribution for the
structural prior for the IDP results below.
Our model for the experimental prior p(ξ|I) for the

individual NMR data types, including experimental measure-
ment uncertainty and back-calculation error, is similar to that
presented by Fisher et al.24−26,34 However, our work diverges

Figure 3. log p(X,ξ | D,I) vs RMSD for ∼25 000 misfolded structures
for 1GH9 for (a) OISD and (b) EISD using a uniform prior. See
Figure 2 caption for further details.

Figure 4. log p(X,ξ | D,I) vs RMSD for ∼25 000 structures for 1GH9
for (a) OISD and (b) EISD using a Boltzmann prior. See Figure 2
caption for further details.
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from theirs since they do not treat the nuisance parameters as
random variables to be optimized, but instead they optimize
weights of structures keeping the nuisance parameters fixed. We
refer the reader to eq 10 in ref 49, which is the posterior
distribution equation that is minimized by VBW. To illustrate
the implications of the difference between VBW and EISD on
the choice of error handling, we implemented their method to
perform several comparisons.
For the VBW method, the posterior distribution contains

two sums over the number of structures and thus its
computational cost scales O(N2); they further suggest that to
optimize this equation, one employs a simulated annealing
procedure with 100 × N steps, making their full optimization
procedure for an ensemble scale as O(N3). This clearly restricts
the VBW approach to optimizations over very small (N ∼ 200−
300 structures) data sets (Figure 5a). By contrast, our EISD
method scales as O(N) as evident from eq 6.

This more favorable scaling allows us to easily embed our
EISD posterior probabilities into a Metropolis-Hastings Monte
Carlo framework to optimize ensembles involving thousands of
structures. Table 1 shows that the calculated probability of a
∼1000 member ensemble derived from the de novo MD
ensemble and then optimized for 5000 iterations of Monte
Carlo sampling (MD-EISD-OPT). The new ensemble has
significantly higher fit-to-data probabilities than the parent
ensemble after relatively few iterations considering the

combinatorics of the state space size of this search problem.
This illustrates the strength of the O(N) scaling of the EISD
method for a calculation that would not be tractable under the
VBW formulation.
Furthermore, since the nature of the VBW posterior

distribution directly builds in a strong dependence on the
sample size N, their results are not size extensive. Therefore, the
VBW method relies heavily on the assumption that ∼200−300
structures (what is tractable with their method) are
representative of the IDP ensemble and that results will not
change with respect to larger data sets. In order to test the
impact of small data sets and lack of size extensivity, we
performed a second test of the two methods for ranking two
qualitatively different ensembles of the Aβ42 monomer. We
randomly chose a “reservoir” of 5000 structures from the full de
novo MD and RC ensembles (which have a total of about
42 000 and 83 000 structures, respectively) and then sampled
random subsets of 30, 60, 90, 120 up to 1000 structures from
this reservoir for each size.
Figure 5b shows the resulting optimized posterior proba-

bilities using the VBW and EISD methods across these random
data sets. It is evident that the VBW method shows significant
overlap between the two ensembles given the small data sets
used, indicating the sensitivity to incomplete data, and
furthermore that the optimized probabilities change with the
size of the ensemble N. By contrast the EISD method can
resolve the differences between ensembles with much smaller
data sets, and the EISD posterior probabilities are largely
independent of system size beyond ∼30 structures, since we
always optimize over the same set ofM nuisance parameters for
any size N of discrete structures or structural ensembles.
Next we consider the aspect of IDP ensemble determination

that is most problematic at present, i.e., back-calculation from
structure, which we show competes with or even supersedes
other issues such as the adequacy of force fields and
conformational sampling. We have previously reported the
generation of many different IDP ensembles for the Aβ42
monomer,20 ranging in size from hundreds of structures to
∼83 000 structures that we argue are qualitatively different. The
qualitative differences among these IDP ensemble types would
in fact lead to very different hypotheses about their biology and
motivates the strong desire to differentiate between them.
Thus, ranking of ensembles with well-separated probabilities
using experimental information would significantly build
confidence on the best hypothesis to pursue.
The first class of Aβ42 monomer ensemble comprises a

structurally featureless random coil ensemble (RC) as well as
random coils with statistical secondary structure motifs (Pred-
SS); these are representative of structural ensembles that are

Figure 5. Scaling properties and size extensivity of the VBW vs EISD
Bayesian models. (a) Computational scaling for VBW is O(N3)
whereas the scaling for EISD is O(N). We note that both models also
scale with the number of experimental data points M. (b) The VBW
posterior probability is not size extensive, whereas the EISD
probability is size-extensive.

Table 1. log p(X,ξ|D,I) Probabilities Using Equation 6 for
Seven Different IDP Ensembles for Aβ4220a

structural ensemble J-coupling chemical shift both

MD-EISD-OPT −20.443 −114.800 −133.296
MD-ENS4 −17.400 −116.588 −132.042
Random Coil −18.471 −117.316 −133.841
MD-ENS2 −20.929 −116.013 −134.996
Pred-SS-ENS −31.762 −116.414 −146.230
de novo MD −33.221 −124.257 −155.532
MD-ENS1 −39.381 −121.202 −158.637
Pred-SS −44.449 −120.344 −162.848

aSee main text for their description.
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equivalent to an unfolded protein under very high denaturant
conditions with a large radius of gyration. In addition we
consider very heterogeneous but highly structured ensembles
generated from a replica exchange simulation (de novo MD)
that we would classify as an unfolded protein under very low
denaturant conditions. In addition, we operate on the two
classes structures using the ENSEMBLE method to create new
ensembles that in principle agree with the available
experimental data via restraints (MD-ENS1, MD-ENS2, MD-
ENS4, and PRED-SS-ENS).
Table 1 tabulates the values of the optimized log p(X,ξ | D,I)

using eq 6, for seven qualitatively different ensembles for the
Aβ42 monomer,20 using 16 3J(HN,Hα) coupling constants and
back-calculations from the Karplus equation and 194 hydrogen
chemical shifts and using SHIFTX2 as the back-calculation
from structure.
Figure 6 presents the results in more graphical form by

showing how strongly the rankings depend on experimental
data types. Figure 6a demonstrates that when only chemical
shift data are used, the MD-ENS2, MD-ENS4, Pred-SS-ENS,
and RC ensembles are within uncertainty of the sample size
used for each case. When only J-couplings are considered, the
rank order changes completely, and the relative rankings of
ensembles are somewhat better differentiated as seen in Figure
6b. When we use both scalar couplings and chemical shifts
together (Figure 6c), the relative rankings between ensembles
are qualitatively unchanged from using J-couplings alone.
While it might suggest that J-coupling constants are a more

discriminating measurement for determining IDP structure, in
fact it is that the inherent errors of the heuristic chemical shift
calculators are larger than uncertainties in the Karplus
equations and add little to the discrimination among ensembles,
as implied in Figure 1. Even so, the parameters of the Karplus
equation do not escape scrutiny, since J-couplings alone or
together with chemical shifts cannot differentiate between the
extended RC ensemble and the collapsed and structured MD
ensembles. Even the Metropolis scheme for optimizing new
ensembles using p(X,ξ|D,I) for MD-EISD-OPT are likely
dominated by the problems with back-calculation errors (Table
1).
To more explicitly show the uncertainties that arise from

back-calculation errors, we use Gaussian Kernel Density
Estimation (KDE)50 to approximate the probability distribu-
tions of back-calculated values corresponding to each
experimental data point. Figure 7 shows the KDE result for
the Aβ42 J-coupling data for Pred-SS and MD-ENS4, the
lowest and highest probability ensembles for J-coupling,
respectively, are shown in Figure 7.
We can see that for both ensembles, the mean of almost

every distribution of back-calculations is within experimental
error bars and is often nearly exactly the experimental mean
value. In fact, we found that this is true for nearly every
experimental measurement, including chemical shifts, in every
tested ensemble. This demonstrates that most of the similarites
in the EISD probability between ensembles is a result of the
error and uncertainty in the back-calculation of experimental
observables; in other words, optimizing the EISD model almost
always favors lower-probability nuisance parameters over
distributions whose means are outside experimental error
bars. This suggests that improving the accuracy of the back-
calculation from structure is the most crucial step that can be
made toward the overall improvement of IDP ensemble
determination.

Finally, we consider the improvement that would arise in
IDP ensemble ranking if the variances used for the back-
calculation from structure to experimental observable were
smaller. We emphasize that this is highly artificial for the reason
that SHIFTX2 is currently ill-suited to true chemical shift
predictions for IDPs; the main utility of this test is to
demonstrate what would happen if we had more conf idence in
the chemical shift prediction. Figure 8 illustrates the result if we
artificially reduce the variances of the Gaussian distributions by
a factor of 3, (improvements which in principle would be
possible with highly accurate QM calculations). Now the
rankings are becoming more differentiated among structural

Figure 6. log p(X,ξ | D,I) evaluated for X equal to the following
qualitatively different ensembles for the Aβ42 monomer: random coil
(RC), statistical secondary structure (Pred-SS), de novo MD, and
ENSEMBLE optimized ensembles (MD-ENS1, MD-ENS2, MD-
ENS4, and Pred-SS-ENS) using (a) J-coupling data only, (b) chemical
shift data only, and (c) J-coupling and chemical shift data together.
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ensembles. If we had consistent and high quality back-
calculations for other data types, such as SAXS, that would
likely better differentiate between the MD and RC ensembles
for amyloid-β. Combined with other data types and the
development of better structural priors, EISD can tractably
deliver on even better IDP rankings or structural ensemble
refinement using Monte Carlo.

■ CONCLUSION
Our Bayesian approach differs from previous formulations in
the optimization of experimental and back-calculation “nui-
sance” parameters that are treated as random variables with
known Gaussian distributions. Our resulting EISD method is
both size extensive with O(N) scaling that allows for the rapid
evaluation across very large data sets. When we applied the
EISD approach on singular folded proteins and a corresponding
set of ∼25 000 misfolded states, we found that uninformative
uniform priors performed nearly as well as Boltzmann
weighting for two proteins. Furthermore, we showed the
problems that can arise using Boltzmann weighted priors for a
protein with a disordered segment, which directed us toward
using an uninformative structural prior in the formulation of
our EISD posterior probability for IDPs.
The EISD formulation presented here offers significant

advantages over other existing Bayesian methods since it is size
extensive, is able to clearly rank very different IDP ensembles,
and the O(N) scaling allows the characterization of very large
IDP ensembles of tens of thousands of structures and ease of
Metropolis optimization to create new ensembles.
Finally, we showed that what is just as important as a greater

range of experimental restraints, better force fields, or
computational sampling to create candidate ensembles, is
higher accuracy back-calculations from structure for important
NMR data types such as chemical shifts and J-couplings. Since
the error in NMR experimental measurements for these data
types are relatively small, a factor of 3 improvement in the back-
calculation error from structure could change this situation,
allowing us to better discriminate among alternative structural
ensembles and possibly extending the ability to refine for an
IDP structural ensemble model given the experimental data.
However, because the large number of degrees of freedom for
the IDP is much larger than the number of experimental
constraints, the underdetermined nature of the ensemble
construction problem will continue to be a significant challenge
in the future. In order to produce better IDP models, we must
(1) produce better back-calculators from all types of
experimental data, which reduces one source of degeneracy
and (2) create a prior distribution that can accurately reflect the
quality of an ensemble before experimental constraints are
added in. EISD is sufficiently general to allow for both of these
advances to be incorporated.
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Figure 7. Gaussian Kernel Density Estimation of the probability
distributions of back-calculated J-coupling constants from (a) MD-
ENS4 and (b) Pred-SS. Wider areas represent higher probabilities.

Figure 8. log p(X,ξ | D,I) evaluated for X equal to seven different
ensembles for the Aβ42 monomer shown in Figure 7 using both J-
coupling and chemical shift data but artificially reducing back-
calculation uncertainties by a factor of 3.
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